Interpretable Facial Relational Network Using Relational Importance

نویسندگان

  • Seong Tae Kim
  • Yong Man Ro
چکیده

Human face analysis is an important task in computer vision. According to cognitive-psychological studies, facial dynamics could provide crucial cues for face analysis. In particular, the motion of facial local regions in facial expression is related to the motion of other facial regions. In this paper, a novel deep learning approach which exploits the relations of facial local dynamics has been proposed to estimate facial traits from expression sequence. In order to exploit the relations of facial dynamics in local regions, the proposed network consists of a facial local dynamic feature encoding network and a facial relational network. The facial relational network is designed to be interpretable. Relational importance is automatically encoded and facial traits are estimated by combining relational features based on the relational importance. The relations of facial dynamics for facial trait estimation could be interpreted by using the relational importance. By comparative experiments, the effectiveness of the proposed method has been validated. Experimental results show that the proposed method outperforms the state-of-the-art methods in gender and age estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing Correlation between Internationalization Orientation and Social Network

 The research on social networks and collaborative strategies has highlighted from the mid of 1980 which has contributed to the success and development of firms. The relationship and communication with trade partners in overseas help success of firms in entering to foreign markets and improve new partners and new markets abroad. Doing firm internationalization in foreign countries faces some ba...

متن کامل

Induction of Interpretable Possibilistic Logic Theories from Relational Data

The field of Statistical Relational Learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which make them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they...

متن کامل

Modelling Relational Data using Bayesian Clustered Tensor Factorization

We consider the problem of learning probabilistic models for complex relational structures between various types of objects. A model can help us “understand” a dataset of relational facts in at least two ways, by finding interpretable structure in the data, and by supporting predictions, or inferences about whether particular unobserved relations are likely to be true. Often there is a tradeoff...

متن کامل

Revenue - Profit Measurement in Data Envelopment Analysis with Dynamic Network Structures: A Relational Model

The correlated models are introduced in this article regarding revenue efficiency and profit efficiency in dynamic network production systems. The proposed models are not only applicable in measuring efficiency of divisional, periodical and overall efficiencies, but recognizing the exact sources of inefficiency with respect to revenue and profit efficiencies. Two numerical examples, consisting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10688  شماره 

صفحات  -

تاریخ انتشار 2017